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Abstract. The lowest members of the Yvon-Born-Green and Kirkwood hierarchies lead, in
the SCF approximation in polymers, to physically non-equivalent consequences: Kirk-
wood’s equation describes Reiss’s SCF and so it is equivalent to Reiss’s variation principle,
whereas the Yvon-Born-Green equation is not. In addition, assuming the existence of a
spherically symmetric distribution of the polymer chain about the origin then both the
Yvon-Born-Green and Kirkwood equations are equivalent to Edwards’ probability
approach.

The discrepancy in the consequences of both types of equations in the SCF approxima-
tion is obviously due to the use of this approximation. The situation, as described here, is
analogous to the situation in the theory of liquids and imperfect gases where the use of
Kirkwood’s superposition approximation leads to different physical consequences in both
types of equation.

1. Infroduction

Itis well known that in the theory of liquids and imperfect gases two systems
(hierarchies) of integro-differential equations derived by differentiating the distribution
function of these physical systems with respect to the charging parameter (the Kirk-
wood system) and the position coordinate (the Yvon-Born-Green (YBG) system), are
strietly equivalent, i.e. it is possible to mathematically transform one system of these
¥quations to another (Hill 1956, Rice and Gray 1965). Because of mathematical
difficulties, so called closure approximations are introduced into the lowest members of
th_“e equations by which the hierarchy is truncated. In liquids and imperfect gases
Klrkwood’s superposition approximation of distribution functions is used and its
’ﬂflu§ion into the second member of both hierarchies violates the equivalence already
Tentioned of the integral equations derived thus (Hill 1956, Rice and Gray 1965).
. In‘ describing a polymer chain employing the Kirkwood and YBG systems, a
Mtuation occurs similar to the above mentioned case. The lowest members of both
berarchies are again (i.e. without the use of any approximation) precisely equivalent
gyselka 1974, unpublished). In contrast to the theory of liquids and imperfect gases it
of’lgeneral'not possible to use Kirkwood’s superposition approximation. .The essence
Snbsee usual Kirkwood approximation is the neglect of indirect correlation among a
_t°f particles in a fluid and other particles of fluid. This neglect is generally not
Pell'mme(.j in systems not showing translational invariance. Just such a system is a
Wlymer in which pair-wise interactions between monomer units were replaced accord-
T8 to Reiss (1967) and Edwards (1965), by unknown self-consistent fields (scF
Omation). Because it is necessary to introduce the origin of ScF, the translational

651



652 A Kyselka

symmetry of space is destroyed, and, therefore, in polymers in the scr approXimati
the neglect of indirect correlation including effects transmitted along the backbonem;
the chain is not justified. In Freed and Gillis (1971) and Freed (1971) the yg 2f
Kirkwood’s superposition approximation for deriving Reiss’s scF (Yamakawa 1971
was well criticized. These works also showed the incompatibility of the use of this
superposition approximation with the introduction of scr. Now the question arises,
the introduction of the scF closure approximation in polymers into the lowest members
of the YBG and Kirkwood hierarchies leads to a similar situation as that in liquids and
imperfect gases, i.e. to violation of their equivalence, or, if the scr approximation leads
in both hierarchies in polymers, to the same conclusions. '

The proper way to investigate the consequences of the SCF approximations of Reiss
and Edwards within the framework of the YBG and Kirkwood systems is to introduce
into the lowest members of both hierarchies physical assumptions (closure approxima-
tions) corresponding to those of Edwards and Reiss. In Kyselka (1973) the equivalence
of the lowest member of the YBG hierarchy to Reiss’s variational principle was proved
on the basis of Reiss’s sCF closure approximation (i.e. without the use of the superposi-
tion approximation). The mathematical error involved in Kyselka (1973), however,
changes this conclusion, and the result is that as in the theory of liquids and non-ideal
gases in the sCF approximation of distribution functions of a chain, the lowest members
of the YBG and Kirkwood hierarchies are not physically equivalent (i.e. Jead to various
types of scr). Our conclusion is in contradiction with the result of Whittington and
Dunfield (1973) where Reiss’s sCF was obtained by using superposition and then
Markovian closure approximations.

The aim of this work is to correct the result of Kyselka (1973) and to show that the
use of only Reiss’s scF approximation in Whittington and Dunfield (1973) leadstoa
conclusion identical to ours.

2. The Yvon-Born-Green system

The lowest member of the YBG hierarchy has the form (Whittington and Dunfield
1973)
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aresinglet and pair distribution functions of a polymer. 8(ry) on the right-hand side of
tion (2) means that one end of the polymer chain was chosen as the origin, i.e.
n=0. The term R(r; —r;—;) means the bond energy and U(r; —r;) includes long-range
interactions resulting in the effect of excluded volume.
The scF approximation of the distribution function of a polymer obeys exactly the
diffusion equation (Rosenblatt 1951):

(a Lg2, 8nn)  0Z(n)/on

2y S 220 ) psce(r, 3 (8] =6 3)

and therefore cannot in general simultaneously obey Markovian approximations of first
members of the YBG or Kirkwood systems. However, if such an unknown scr
é(r,n)—call it ¢o(r, n)—exists, which obeys identically the Markovian approximation
of equation (1), i.e.

KTV psce(r, n; [do))

= f pasce(s, n—1;r,n;[¢])V,R(r—s)ds

n=2
+ Z_:O Pascels, i1, n; [Po])V,.U(r—s) ds, 1)

then the function pscr(r,, n; [¢o]) automatically satisfies equation (3) for ¢ = ¢, and is
therefore the solution of our problem. The unknown field ¢o(r) is then obtained by
direct substitution of the sCF approximation of the distribution function of a polymer
into equation (1) and by performing the required operations.

We note now that the unknown field ¢o(r) can be obtained by using the Ornstein-
Ublenbeck stationary Gaussian Markovian process of random fields for the distribution
fuction p(r, n) of a polymer (Freed 1971, Edwards 1965 and Kac 1968). The relation
of this approach with our method will be explained in a further paper.

The following theorem holds: Assuming that equation (1) is satisfied by distribution
functions of a polymer in the scF approximation (Reiss’s assumption) the unknown field
4lr, n) is given by the following equation:

n—2

PP, n; [¢0])Vn¢o("m n)= Z J‘ DascrlFi, i3 P, 15 [¢o)V,.U(r,—r) dr. 4)

i=

This statement can easily be proved by substituting in equation (2)

L Ul=r)=Y é(r)
Osi<j=n i=1
JjEi+1
& thep by inserting it in equation (1) and by comparing the explicitly expressed
f-hand side with the right-hand side of equation (1). Note that by letting ¢(0) = € the
lational symmetry of space is violated. Equation (4) by no means leads to Reiss’s
*® InKyselka (1973) it was assumed erroneously that for the hard-sphere potential
N=KTB5(r) it is possible to consider the function pssce(F;, i; #s 1)/ Pscr(ns 1) 28
*“2nd then the left-hand side of equation (4) would be the total differential. This
nd‘.""ﬂ is not achieved on the boundary of the integration region of the integral on

fy cgght-hand side of equation (4) with respect to the limiting properties of this
on,
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Let us now assume the existence of a spherically symmetric probability distyit
tion of a polymer about the point ro= 0 (Edwards’ assumption). In that case itjs possib‘;.
according to Yamakawa (1971), Freed and Gillis (1971), and Freed (1971) to e
superposition approximation on the right-hand side of equation (4) and theq the
spherically symmetric field, which already is not explicitly dependent on the index
will be Edwards’ scr: "a

n—-2
$e)='T | Ul =ropscelr, 9

which is precisely the result (33) in Freed and Gillis (1971). Note that Edwards’ original
assumption was the Markovian approximation of the distribution functions of 5
polymer chain. By introducing ‘Green functions’

. 1 { 1 {
Gscelr, 13 j—0) = I exp( kT, Y R(n "‘z-1)‘ﬁ > d>(r[)) drie;...droy,  (§)

=i+1 1=i+1

with j>1i, it tan easily be seen that

. 1 . .
Dascells, is Py 0) = Gscr(0, r;; i) Gscr(r, o3 n—i)
F

i.e. the sCF approximation of distribution functions is identical, except for a constant
factor, with the Markovian closure (Freed and Gillis 1971, de Gennes 1969). Note that
the Markovian approximation to equation (1) is now

“kwnGSCF(o’ L (S [¢])
= J Gscr(0, re-13 1~ 1; [@D) Gscr(Pu-1, 1 1; [ Vn R(ry = Fomt) dracy
n—=2
+X I Gscr(0, 113 i3 [¢]) Gscr(rs o3 n—i; @)V, Ur, —r)dr - (1)

which is strictly equation (13) of Whittington and Dunfield (1973) and the Edwards field
now has form

1 n—2 "
$(r)=-— Y st U(r—s)Gsce(0, s; i;[¢])Jersc1:(s,r; n—i;[¢) (5)
SCF i=0

which is precisely equation (2.27) of Freed (1971).

3. Kirkwood’s system
The lowest member of Kirkwood’s hierarchy has the form (Naghizadeh 1967)
kTap(r,., n;§)

o

n—=2 .
=p(r.n;é) ) “ U(r, = r)pa(r, is 1, n; §) dridry
i=0

n—2
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. . er.
where the charging parameter £ is connected to the nth monomer of a polym
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31, Reiss’s field

Let equation (7) be satisfied in the same way as in the preceding paragraph by the scr
distribution functions (albeit Markovian type). By inserting the corresponding expres-
<ions for the distribution functions of the polymer into (7), differentiating with respect
o the charging parameter £ on left-hand side of equation (7) and letting £ =1 we get

I'n, R
Icl?psa(rm n) J ¢(rm n)PSCF(’m n) drn - ¢(kT )pSCF(rn, n)

1 "2 .
=——pscr(Fs ) ZO ” U(r, —r)pascrl(r; i; 1, n) dr; dr,

kT

1 n—2 )
T & J U(r, —r)pasce(rs, i 1y n) dr; 8

- and by comparing terms in (8) we get
n—2 P .
pZSCF(ri’ Ly 1, [¢])

P, n)= U@, —r; dr, 9

$lew ) i; I ( : pscr(rn 03[0 ®

which is the well-known Reiss field. This result, based on approximations which are
analogous to Reiss’s method, was also obtained by Naghizadeh (1967) which confirms
the equivalence of the first member of Kirkwood’s hierarchy to Reiss’s variational
principie. The method of random fields used in Freed’s and Edwards’ works applied to
the functional integral representation of the distribution function p(r,, n; £), however,
keads in the case of Kirkwood’s equation only to an Edwards-type field. The reason for
this discrepancy is probably in the basis of the method used.

32. Edwards’ field

AS_Suming the spherically symmetric distribution function of a polymer about the
oigin it is possible to use the superposition approximation (Edwards 1965),
Psce(r, £ 1, 1) = pscp(rs, §)psce(ra, n) (see 2lso Yamakawa 1971, Freed and Gillis
197 and Freed 1971). Note that in Yamakawa (1971) the superposition approxima-
ton was used even in the case of Reiss’s scr which was criticized by Freed and Gillis
(1971) and Freed (1971) as mentioned above. Then equation (9) again leads to

Edwards’ scr.
! Remark on the derivation of Reiss’s scr in Whittington and Dunfield

‘I:lhe_derivation of Reiss’s differential equation, Whittington and Dunfield (1973) used
their work our equation (1) written in the superposition closure approximation:

KTV p(r, n)

= J dsp(s, n—1)p(r, n)V,R(r—s)+'§: J ds p(s, )p(r, n)V,U(r—s). (10)

uﬂsequaﬁ(m’ for n =1 and boundary condition p(r, 0) = 8(r), gives

R(r~s)=—kTInp(r—s;1). (11)
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Reiss’s differential equation is related to the Green function Gscr(r, r;: i=i) ¢
equation (6)) and therefore it is necessary to insert relation (11) into our equz}a;ion (1")3.ee

ViGscr(0, 7; n)

Gscr(r, s; 1)

=jds G0, 1= 1) E L2051

n=2

+ -Zo J ds Gsce(0, s; ) Gscr(r, s; n —i)V,U(r —s). @

However, because Reiss’s scF is of such a nature that Gsce(r, s; 1) # Zp(r,s; 1), with
regard to incompatibility of the superposition approximation with the introduction of
SCF in polymers, it is impossible to perform the integration in equation (12) not even by
changing the physical interactions U(r—s) to a hard-sphere potential in the second
term on the right-hand side. Therefore, in contradiction to the result of Whittington and
Dunfield (1973), the first member of the YBG hierarchy is not equivalent to Reis's
differential equation (see equation (25) in Yamakawa 1971).

Edwards’ assumption of a spherically symmetrical field in a polymer with one end
fixed at the origin and other end free (the end-to-end distance of the chain is not fixed)
leads to the relation Gyep(r, s; 1) = Zp(r, s; 1). For U(r)=kTB8(r), the result of our
work is then the same as the result of Whittington and Dunfield (1973). However, our
method is more general because it leads to Edwards’ scF in the case of a general typeof
physical pair interaction U(r—s).

We note now that it is possible to substitute the approximation (11) by introducing
an assumption of constant bond length:

1 S(r—s|—1
eXP<-ﬁR(r—S)) ~L"47751'|2_2= Gscr(r, s; 1)

which would make it possible in the case of a hard-sphere potential to derive Reiss’ssce
equation without the use of the superposition approximation. However, the method
mentioned above shows that approximation we have used is equivalent to the super-
position approximation, incompatible with Reiss’s sCF.

5. Discassion

The initial point of Reiss’s and Edwards’ scF theory of the excluded volume eﬁect.m
polymers is the decoupling of the many-body problem by substitution of Palf'W’S:
interactions of the excluded volume U(r; —r;) in the distribution functions of a polyme:
by unknown fields ¢ (r;), which depend on the coordinate of a single monomer 0 t)e,iy
Reiss’s and Edwards’ definitions stem from different physical principles adequa
elucidated by Freed and Gillis (1971) and Freed (1971): Reiss’s scheme stems fr((i”tt: o
variational principle requiring a minimum of the free energy of a polymer define f:om
appropriate choice of an unknown field ¢ (r;), whereas Edwards’ schc_ame Sfelﬂfr
probability ideas. Whereas the physical nature of Edwards’ approach is less cte2!
Reiss’s, Edwards’ system is strictly self-consistent while Reiss’s is not (seealso
Freed 1974). &5’ leads 08
For these reasons both approaches lead to different types of SCF: _Eqwaf 10afe
field which is spherically symmetrical about the origin whereas Reiss's leads
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which takes into account not only the presence of the first monomer at the origin but
also the presence of the nth monomer at the considered point. This represents a -
significant improvement over Edwards’ field (de Gennes 1969). In other words, Reiss’s
field expresses an SCF potential dependent on ‘time’.

In Freed (1971) the incompatibility of Kirkwood’s superposition approximation
with the scF (albeit Markovian) approximation in polymers was stated. If we accept
that this principle is valid only for the more perfect Reiss scF, then Reiss’s assumption is
the closure approximation sCF of the distribution functions, whereas Edwards’ assump-
tion is the SCF approximation + the superposition approximation (see also Reiss 1967).
Under these assumptions the YBG equation is equivalent to Edwards’ probability
approach whereas Kirkwood’s equation is equivalent to Reiss’s variational method
and, at the same time, to Edwards’ approach which is a situation analogous to the
msertion of Kirkwood’s superposition approximation into the integro-differential
systems in Jiquids and imperfect gases already mentioned.
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